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Motivation

Imagine a city manager trying to improve the global state of the transportation system of
a city, from building new roads, to changing bus routes, or even adding new public transit.
The city is currently laid out in a way that does not necessarily match the population and
its organisation and they might want to optimize its structure while affecting the least peo-
ple. Given this problem, how local can the changes be so that they lead to the desired global
optimum?

Although we do not directly address this exact optimization problem, our problem falls under
the same framework, wondering how local optimizations can lead to the global optimum.

Can we optimize Montreal’s traffic
while minimizing its constructions?

Optimizations

Our work focusses on studying properties of optimizations, as defined below.

Definition [Optimization]. Given a complete weighted graph (Kn, w), an optimiza-
tion X = (H0, S0, H1, S2, . . . ,Hm) is an alternating sequence where:

• Hi is a spanning subgraph of Kn;

• Si is a connected subset of Hi;

• Hi+1 is obtained from Hi by replacing its induced subgraph Hi[Si] on Si by its
corresponding minimum spanning tree.

Since the weights of H0, H1, . . . ,Hm decreases, we are mainly interested in optimiza-
tions that eventually reach the minimum spanning tree. Write O+(H0) for the set of
such optimizations, where Hm is the minimum spanning tree of Kn.

Given an optimization X = (H0, S0, . . . ,Hm), we want to define a measure on its effi-
ciency. To do so, we define the cost of an optimization to be the maximal weight of the
replaced subgraph when going from Hi to Hi+1:

cost(X ) := max
0≤i<m

{
w
(
Hi[Si]

)}
.

In the case of the city manager problem, an optimization corresponds to a sequence of
local changes implemented to improve the road layout, and the cost of an optimization
corresponds to the largest size of any single change.

Example

Given our current
graph Hi,

consider a
connected
subset Si;

replace the
subgraph
on Si by its
minimum
spanning
tree;

and obtain
the new
graph Hi+1.

The cost of this transition from
Hi to Hi+1 is the sum of the
weights of the yellow edges.

Results

Under mild assumptions on (Kn, w) and H0, the minimal value
of the cost to reach the minimum spanning tree starting from H0

nicely converges when n→∞, as stated in the following theorem.

Theorem [Addario-Berry, Barrett, and C.]. Let (Kn, w) be the
complete graph with independent Uniform([0, 1]) edge weights and let
H0 be a spanning subgraph of Kn chosen independently of w. Then,
as n→∞,

min
{

cost(X ) : X ∈ O+(H0)
}

P−→ 1 .

The fact that this minimum is larger than 1 − o(1) is not difficult
to check, simply by considering the largest edge in H0. The inter-
esting part of this result is the upper bound, stating that there ac-
tually exists optimizations whose cost is 1 + o(1). Below is a quick
explanation of our main argument.

Method

The main method of our proof consists of finding an optimization
with small cost able to go from the minimum spanning tree on a
graph of size k to the minimum spanning tree on a graph of size
k + 1.

Assume that we managed to obtain Hi such that there exists
|S| = k with Hi[S] being the minimum spanning tree on S. Then,
by choosing Si = S ∪ {v}, where v is a neighbour of S in Hi, it
follows that Hi+1 contains the minimum spanning tree on S ∪ {v}.
Moreover, the weight of such transition is

w
(
Hi[Si]

)
' 1 + w(MSTk) ' 1 + ζ(3) ' 2.2 . . .

where the 1 comes from the maximal possible weight from S to v
and ζ(3) comes from the asymptotic weight of large minimum span-
ning trees. This method gives an upper bound of ' 2.2 for the min-
imal cost, which is not tight. However a similar but finer approach
leads to the desired 1 + o(1).


