BEGIN:VCALENDAR
VERSION:2.0
PRODID:-// - ECPv5.3.1//NONSGML v1.0//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
X-ORIGINAL-URL:https://aarms.math.ca
X-WR-CALDESC:Events for
BEGIN:VTIMEZONE
TZID:America/Halifax
BEGIN:DAYLIGHT
TZOFFSETFROM:-0400
TZOFFSETTO:-0300
TZNAME:ADT
DTSTART:20200308T060000
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:-0300
TZOFFSETTO:-0400
TZNAME:AST
DTSTART:20201101T050000
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTART;TZID=America/Halifax:20201127T160000
DTEND;TZID=America/Halifax:20201127T170000
DTSTAMP:20210225T200022
CREATED:20200904T115630Z
LAST-MODIFIED:20201123T152316Z
UID:5472-1606492800-1606496400@aarms.math.ca
SUMMARY:Dalhousie-AARMS AAMP Seminar: Graham Cox (Memorial University)
DESCRIPTION:Title: Nodal deficiency via equipartition energy functionals and the Dirichlet-to-Neumann map\nAbstract: A classic result in differential equations is that the nth eigenfunction\nof a Sturm-Liouville boundary value problem has precisely n-1 zeros.\nCourant’s nodal domain theorem provides a natural generalization of this\nresult to higher dimensions\, but it is generally not sharp. The lack of\nsharpness is measured by the “nodal deficiency” of an eigenfunction.\nDespite over a century of intensive study\, this quantity is still not\nvery well understood. \nThe first explicit formula for the nodal deficiency was obtained in 2012\nby Berkolaiko\, Kuchment and Smilansky\, using an energy functional\ndefined on the space of equipartitions. More recently\, with Jones and\nMarzuola\, I obtained another formula for the nodal deficiency\, in terms\nof Dirichlet-to-Neumann operators defined on the eigenfunction’s nodal\ndomains. While originally derived using symplectic methods\, this result\ncan also be understood using the spectral flow generated by a family of\nboundary conditions imposed on the nodal set. In this talk I will\ndescribe this flow\, and explain how it provides a concrete mechanism by\nwhich low energy eigenfunctions do or do not contribute to the nodal\ndeficiency. I will also describe recent progress relating these two\nformulas for the nodal deficiency\, and hint at some applications to the\ntheory of spectral minimal partitions. \nThis talk represents joint work with Thomas Beck\, Gregory Berkolaiko\,\nIsabel Bors\, Yaiza Canzani\, Grace Conte\, Christopher Jones and Jeremy\nMarzuola. \nThe Dalhousie-AARMS Analysis-Applied Math-Physics Seminar takes place on Fridays from 4 – 5 pm Atlantic Time over Zoom. If you would like to attend\, please email the organizers for connection details.
URL:https://aarms.math.ca/event/dalhousie-aarms-aamp-seminar-2020-10-16-2-2-2/
LOCATION:Zoom seminar
CATEGORIES:AAMP Seminar
ORGANIZER;CN="Suresh%20Eswarathasan":MAILTO:sr766936@dal.ca
END:VEVENT
END:VCALENDAR