
Automated theorem proving algorithms

June 30, 2018

As technical systems have become more and more complex, verifying that

a design works as intended has become an increasingly difficult task. Tradi-

tionally, the testing of such systems has relied on model simulations. In this

approach a model of the system is fed a wide range of input values, and the

results compared against specifications to verify that the system is behaving as

expected. Although effective at identifying certain kinds of bugs, this method

of testing can easily miss more subtle errors – if a bug requires a particular

set of unlikely conditions to be met before causing any problems, for instance,

simulation-based testing won’t find it unless the exact set of inputs needed to

trigger those conditions are fed to the model.

QRA is at the forefront of an entirely new approach to systems testing: the

use of formal methods to mathematically verify that a system design is correct.

In formal methods testing, the system is treated as a set of mathematical state-

ments, and programs such as Satisfiability Modulo Theories (SMT) solvers are

used to attempt to prove that certain properties of the statements hold. The

advantage of using formal methods in this manner is that conclusive guaran-

tees about the behaviour of the system can be obtained: we can confirm that

desired or expected behaviour is mathematically certain to happen, or that un-

expected or non-desired behaviour is mathematically impossible. The nature

of the proofs obtained in formal methods testing means that the entire space

of possible inputs to the model is covered, including strange edge cases that

simulation-based testing might miss. Moreover, in cases where we find that

the expected behaviour isn’t guaranteed to hold - in cases where there is a

bug, in other words - we can provide specific counterexamples, demonstrating

a set of inputs for which the unexpected behaviour occurs. This can be invalu-

able for systems engineers trying to hone in on the source of a problem in their

design.

1



Although formal methods testing can be a powerful tool, it does have limi-

tations. Despite significant recent advances in SMT solvers, there are still many

problems that they are unable to solve. As a result, in many cases when a par-

ticular query about a model is posed to our software, we are unable to return

a result, and it is not always clear why. In some cases the model is simply too

big, and a result would be returned if the analysis were allowed to continue

long enough. In other cases the query is posed in a way that is ill-suited to the

provers and solvers we use, and another equivalent formulation of the query

might yield a result instantly. In still other cases the query (or the model) falls

outside of the theories that the solvers can handle entirely.

The goal of this problem is to help further our understanding of the cir-

cumstances under which our software will be unable analyze a query about

a model, and why. To provide initial direction, we will provide two complex

models which our software can partially, but not completely analyze. You will

explore what can and cannot currently be proved about these models with our

software, and for the cases where proofs can’t be obtained, investigate why

not. This might involve working with the models themselves (e.g. stripping

down the models until they’re simple enough to be completely analyzed, or

looking at the scaling behaviour of analysis times as model complexity/size is

increased or decreased). Or it might involve working on the SMT solver side of

things, looking at whether or not different formulations of the problem might

allow for analysis, or if different tactics and strategies that the solver can try

might be helpful.

A desirable outcome from this investigation would at least include: 1) a

more comprehensive mapping than we currently have of the boundary be-

tween what is and is not proveable about these models with our software,

and more information about scaling behaviour. It might also include 2) push-

ing that boundary forwards, through whatever means you can think of, allow-

ing us to prove more about the models than we currently can. In addition, a

secondary goal of the investigation would be to gain an understanding of the

*general* characteristics (extending beyond just the two examples provided)

that are likely to make a model difficult to analyze. For instance, how much

does the topology of a model matter, over and above the effect of its size? Are

”wide”models more or less challenging than ”deep”models? Are certain model

components particularly troublesome? Information like this could be very valu-

able to QRA, going forward.

Relatively little mathematical background is required to work on this prob-

lem, although students familiar with mathematical logic or theoretical com-

puter science and algorithms might find it particularly interesting. Some fa-

miliarity with computer programming could be an asset, but is by no means

required.

2


